metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.3D10, C10.71(C4×D4), (C2×C20).247D4, C23.D5⋊14C4, C23.15(C4×D5), C22.95(D4×D5), C2.1(C20⋊2D4), (C22×C4).24D10, C10.82(C4⋊D4), (C2×Dic5).150D4, C10.30(C4.4D4), C22.50(C4○D20), (C23×C10).27C22, C5⋊5(C24.C22), C23.277(C22×D5), C10.10C42⋊38C2, C10.11(C42⋊2C2), C10.45(C42⋊C2), C2.24(Dic5⋊4D4), C22.43(D4⋊2D5), (C22×C20).341C22, (C22×C10).319C23, C2.5(Dic5.5D4), C2.5(C23.D10), C10.71(C22.D4), C2.2(C23.18D10), (C22×Dic5).35C22, C2.13(C23.11D10), C2.7(C4×C5⋊D4), (C2×C4×Dic5)⋊21C2, (C2×C22⋊C4).6D5, C22.123(C2×C4×D5), (C2×C10.D4)⋊7C2, (C2×C10).314(C2×D4), C22.47(C2×C5⋊D4), (C2×C23.D5).6C2, (C2×C4).167(C5⋊D4), (C10×C22⋊C4).23C2, (C2×C10).140(C4○D4), (C22×C10).115(C2×C4), (C2×C10).206(C22×C4), (C2×Dic5).103(C2×C4), SmallGroup(320,571)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.3D10
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=b, f2=db=bd, ab=ba, ac=ca, eae-1=ad=da, faf-1=acd, bc=cb, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e9 >
Subgroups: 590 in 190 conjugacy classes, 69 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic5, C20, C2×C10, C2×C10, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C24.C22, C4×Dic5, C10.D4, C23.D5, C23.D5, C5×C22⋊C4, C22×Dic5, C22×C20, C23×C10, C10.10C42, C2×C4×Dic5, C2×C10.D4, C2×C23.D5, C10×C22⋊C4, C24.3D10
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, D10, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C4×D5, C5⋊D4, C22×D5, C24.C22, C2×C4×D5, C4○D20, D4×D5, D4⋊2D5, C2×C5⋊D4, C23.11D10, C23.D10, Dic5⋊4D4, Dic5.5D4, C4×C5⋊D4, C23.18D10, C20⋊2D4, C24.3D10
(2 99)(4 81)(6 83)(8 85)(10 87)(12 89)(14 91)(16 93)(18 95)(20 97)(21 126)(22 155)(23 128)(24 157)(25 130)(26 159)(27 132)(28 141)(29 134)(30 143)(31 136)(32 145)(33 138)(34 147)(35 140)(36 149)(37 122)(38 151)(39 124)(40 153)(42 79)(44 61)(46 63)(48 65)(50 67)(52 69)(54 71)(56 73)(58 75)(60 77)(101 129)(102 158)(103 131)(104 160)(105 133)(106 142)(107 135)(108 144)(109 137)(110 146)(111 139)(112 148)(113 121)(114 150)(115 123)(116 152)(117 125)(118 154)(119 127)(120 156)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 55)(2 56)(3 57)(4 58)(5 59)(6 60)(7 41)(8 42)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 49)(16 50)(17 51)(18 52)(19 53)(20 54)(21 154)(22 155)(23 156)(24 157)(25 158)(26 159)(27 160)(28 141)(29 142)(30 143)(31 144)(32 145)(33 146)(34 147)(35 148)(36 149)(37 150)(38 151)(39 152)(40 153)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 81)(76 82)(77 83)(78 84)(79 85)(80 86)(101 129)(102 130)(103 131)(104 132)(105 133)(106 134)(107 135)(108 136)(109 137)(110 138)(111 139)(112 140)(113 121)(114 122)(115 123)(116 124)(117 125)(118 126)(119 127)(120 128)
(1 98)(2 99)(3 100)(4 81)(5 82)(6 83)(7 84)(8 85)(9 86)(10 87)(11 88)(12 89)(13 90)(14 91)(15 92)(16 93)(17 94)(18 95)(19 96)(20 97)(21 118)(22 119)(23 120)(24 101)(25 102)(26 103)(27 104)(28 105)(29 106)(30 107)(31 108)(32 109)(33 110)(34 111)(35 112)(36 113)(37 114)(38 115)(39 116)(40 117)(41 78)(42 79)(43 80)(44 61)(45 62)(46 63)(47 64)(48 65)(49 66)(50 67)(51 68)(52 69)(53 70)(54 71)(55 72)(56 73)(57 74)(58 75)(59 76)(60 77)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 159)(132 160)(133 141)(134 142)(135 143)(136 144)(137 145)(138 146)(139 147)(140 148)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 152 88 134)(2 141 89 123)(3 150 90 132)(4 159 91 121)(5 148 92 130)(6 157 93 139)(7 146 94 128)(8 155 95 137)(9 144 96 126)(10 153 97 135)(11 142 98 124)(12 151 99 133)(13 160 100 122)(14 149 81 131)(15 158 82 140)(16 147 83 129)(17 156 84 138)(18 145 85 127)(19 154 86 136)(20 143 87 125)(21 80 108 53)(22 69 109 42)(23 78 110 51)(24 67 111 60)(25 76 112 49)(26 65 113 58)(27 74 114 47)(28 63 115 56)(29 72 116 45)(30 61 117 54)(31 70 118 43)(32 79 119 52)(33 68 120 41)(34 77 101 50)(35 66 102 59)(36 75 103 48)(37 64 104 57)(38 73 105 46)(39 62 106 55)(40 71 107 44)
G:=sub<Sym(160)| (2,99)(4,81)(6,83)(8,85)(10,87)(12,89)(14,91)(16,93)(18,95)(20,97)(21,126)(22,155)(23,128)(24,157)(25,130)(26,159)(27,132)(28,141)(29,134)(30,143)(31,136)(32,145)(33,138)(34,147)(35,140)(36,149)(37,122)(38,151)(39,124)(40,153)(42,79)(44,61)(46,63)(48,65)(50,67)(52,69)(54,71)(56,73)(58,75)(60,77)(101,129)(102,158)(103,131)(104,160)(105,133)(106,142)(107,135)(108,144)(109,137)(110,146)(111,139)(112,148)(113,121)(114,150)(115,123)(116,152)(117,125)(118,154)(119,127)(120,156), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,49)(16,50)(17,51)(18,52)(19,53)(20,54)(21,154)(22,155)(23,156)(24,157)(25,158)(26,159)(27,160)(28,141)(29,142)(30,143)(31,144)(32,145)(33,146)(34,147)(35,148)(36,149)(37,150)(38,151)(39,152)(40,153)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(101,129)(102,130)(103,131)(104,132)(105,133)(106,134)(107,135)(108,136)(109,137)(110,138)(111,139)(112,140)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128), (1,98)(2,99)(3,100)(4,81)(5,82)(6,83)(7,84)(8,85)(9,86)(10,87)(11,88)(12,89)(13,90)(14,91)(15,92)(16,93)(17,94)(18,95)(19,96)(20,97)(21,118)(22,119)(23,120)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,109)(33,110)(34,111)(35,112)(36,113)(37,114)(38,115)(39,116)(40,117)(41,78)(42,79)(43,80)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(51,68)(52,69)(53,70)(54,71)(55,72)(56,73)(57,74)(58,75)(59,76)(60,77)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,141)(134,142)(135,143)(136,144)(137,145)(138,146)(139,147)(140,148), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,152,88,134)(2,141,89,123)(3,150,90,132)(4,159,91,121)(5,148,92,130)(6,157,93,139)(7,146,94,128)(8,155,95,137)(9,144,96,126)(10,153,97,135)(11,142,98,124)(12,151,99,133)(13,160,100,122)(14,149,81,131)(15,158,82,140)(16,147,83,129)(17,156,84,138)(18,145,85,127)(19,154,86,136)(20,143,87,125)(21,80,108,53)(22,69,109,42)(23,78,110,51)(24,67,111,60)(25,76,112,49)(26,65,113,58)(27,74,114,47)(28,63,115,56)(29,72,116,45)(30,61,117,54)(31,70,118,43)(32,79,119,52)(33,68,120,41)(34,77,101,50)(35,66,102,59)(36,75,103,48)(37,64,104,57)(38,73,105,46)(39,62,106,55)(40,71,107,44)>;
G:=Group( (2,99)(4,81)(6,83)(8,85)(10,87)(12,89)(14,91)(16,93)(18,95)(20,97)(21,126)(22,155)(23,128)(24,157)(25,130)(26,159)(27,132)(28,141)(29,134)(30,143)(31,136)(32,145)(33,138)(34,147)(35,140)(36,149)(37,122)(38,151)(39,124)(40,153)(42,79)(44,61)(46,63)(48,65)(50,67)(52,69)(54,71)(56,73)(58,75)(60,77)(101,129)(102,158)(103,131)(104,160)(105,133)(106,142)(107,135)(108,144)(109,137)(110,146)(111,139)(112,148)(113,121)(114,150)(115,123)(116,152)(117,125)(118,154)(119,127)(120,156), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,49)(16,50)(17,51)(18,52)(19,53)(20,54)(21,154)(22,155)(23,156)(24,157)(25,158)(26,159)(27,160)(28,141)(29,142)(30,143)(31,144)(32,145)(33,146)(34,147)(35,148)(36,149)(37,150)(38,151)(39,152)(40,153)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(101,129)(102,130)(103,131)(104,132)(105,133)(106,134)(107,135)(108,136)(109,137)(110,138)(111,139)(112,140)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128), (1,98)(2,99)(3,100)(4,81)(5,82)(6,83)(7,84)(8,85)(9,86)(10,87)(11,88)(12,89)(13,90)(14,91)(15,92)(16,93)(17,94)(18,95)(19,96)(20,97)(21,118)(22,119)(23,120)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,109)(33,110)(34,111)(35,112)(36,113)(37,114)(38,115)(39,116)(40,117)(41,78)(42,79)(43,80)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(51,68)(52,69)(53,70)(54,71)(55,72)(56,73)(57,74)(58,75)(59,76)(60,77)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,141)(134,142)(135,143)(136,144)(137,145)(138,146)(139,147)(140,148), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,152,88,134)(2,141,89,123)(3,150,90,132)(4,159,91,121)(5,148,92,130)(6,157,93,139)(7,146,94,128)(8,155,95,137)(9,144,96,126)(10,153,97,135)(11,142,98,124)(12,151,99,133)(13,160,100,122)(14,149,81,131)(15,158,82,140)(16,147,83,129)(17,156,84,138)(18,145,85,127)(19,154,86,136)(20,143,87,125)(21,80,108,53)(22,69,109,42)(23,78,110,51)(24,67,111,60)(25,76,112,49)(26,65,113,58)(27,74,114,47)(28,63,115,56)(29,72,116,45)(30,61,117,54)(31,70,118,43)(32,79,119,52)(33,68,120,41)(34,77,101,50)(35,66,102,59)(36,75,103,48)(37,64,104,57)(38,73,105,46)(39,62,106,55)(40,71,107,44) );
G=PermutationGroup([[(2,99),(4,81),(6,83),(8,85),(10,87),(12,89),(14,91),(16,93),(18,95),(20,97),(21,126),(22,155),(23,128),(24,157),(25,130),(26,159),(27,132),(28,141),(29,134),(30,143),(31,136),(32,145),(33,138),(34,147),(35,140),(36,149),(37,122),(38,151),(39,124),(40,153),(42,79),(44,61),(46,63),(48,65),(50,67),(52,69),(54,71),(56,73),(58,75),(60,77),(101,129),(102,158),(103,131),(104,160),(105,133),(106,142),(107,135),(108,144),(109,137),(110,146),(111,139),(112,148),(113,121),(114,150),(115,123),(116,152),(117,125),(118,154),(119,127),(120,156)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,55),(2,56),(3,57),(4,58),(5,59),(6,60),(7,41),(8,42),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,49),(16,50),(17,51),(18,52),(19,53),(20,54),(21,154),(22,155),(23,156),(24,157),(25,158),(26,159),(27,160),(28,141),(29,142),(30,143),(31,144),(32,145),(33,146),(34,147),(35,148),(36,149),(37,150),(38,151),(39,152),(40,153),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,81),(76,82),(77,83),(78,84),(79,85),(80,86),(101,129),(102,130),(103,131),(104,132),(105,133),(106,134),(107,135),(108,136),(109,137),(110,138),(111,139),(112,140),(113,121),(114,122),(115,123),(116,124),(117,125),(118,126),(119,127),(120,128)], [(1,98),(2,99),(3,100),(4,81),(5,82),(6,83),(7,84),(8,85),(9,86),(10,87),(11,88),(12,89),(13,90),(14,91),(15,92),(16,93),(17,94),(18,95),(19,96),(20,97),(21,118),(22,119),(23,120),(24,101),(25,102),(26,103),(27,104),(28,105),(29,106),(30,107),(31,108),(32,109),(33,110),(34,111),(35,112),(36,113),(37,114),(38,115),(39,116),(40,117),(41,78),(42,79),(43,80),(44,61),(45,62),(46,63),(47,64),(48,65),(49,66),(50,67),(51,68),(52,69),(53,70),(54,71),(55,72),(56,73),(57,74),(58,75),(59,76),(60,77),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,159),(132,160),(133,141),(134,142),(135,143),(136,144),(137,145),(138,146),(139,147),(140,148)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,152,88,134),(2,141,89,123),(3,150,90,132),(4,159,91,121),(5,148,92,130),(6,157,93,139),(7,146,94,128),(8,155,95,137),(9,144,96,126),(10,153,97,135),(11,142,98,124),(12,151,99,133),(13,160,100,122),(14,149,81,131),(15,158,82,140),(16,147,83,129),(17,156,84,138),(18,145,85,127),(19,154,86,136),(20,143,87,125),(21,80,108,53),(22,69,109,42),(23,78,110,51),(24,67,111,60),(25,76,112,49),(26,65,113,58),(27,74,114,47),(28,63,115,56),(29,72,116,45),(30,61,117,54),(31,70,118,43),(32,79,119,52),(33,68,120,41),(34,77,101,50),(35,66,102,59),(36,75,103,48),(37,64,104,57),(38,73,105,46),(39,62,106,55),(40,71,107,44)]])
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 4O | 4P | 4Q | 4R | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10V | 20A | ··· | 20P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D5 | C4○D4 | D10 | D10 | C5⋊D4 | C4×D5 | C4○D20 | D4×D5 | D4⋊2D5 |
kernel | C24.3D10 | C10.10C42 | C2×C4×Dic5 | C2×C10.D4 | C2×C23.D5 | C10×C22⋊C4 | C23.D5 | C2×Dic5 | C2×C20 | C2×C22⋊C4 | C2×C10 | C22×C4 | C24 | C2×C4 | C23 | C22 | C22 | C22 |
# reps | 1 | 2 | 1 | 1 | 2 | 1 | 8 | 2 | 2 | 2 | 8 | 4 | 2 | 8 | 8 | 8 | 2 | 6 |
Matrix representation of C24.3D10 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
15 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 36 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 16 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 22 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 21 |
0 | 0 | 0 | 0 | 0 | 9 |
G:=sub<GL(6,GF(41))| [1,15,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,36,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,5,0,0,0,0,0,0,40,0,0,0,0,0,16,1],[40,0,0,0,0,0,22,1,0,0,0,0,0,0,0,8,0,0,0,0,5,0,0,0,0,0,0,0,32,0,0,0,0,0,21,9] >;
C24.3D10 in GAP, Magma, Sage, TeX
C_2^4._3D_{10}
% in TeX
G:=Group("C2^4.3D10");
// GroupNames label
G:=SmallGroup(320,571);
// by ID
G=gap.SmallGroup(320,571);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,253,387,58,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=b,f^2=d*b=b*d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^9>;
// generators/relations